661 research outputs found

    Remnant cholesterol predicts progression of diabetic nephropathy and retinopathy in type 1 diabetes

    Get PDF
    Background We aimed to assess whether remnant cholesterol concentration and variability predict the progression of diabetic nephropathy (DN) and severe diabetic retinopathy (SDR) in type 1 diabetes. Methods This observational prospective study covered 5150 FinnDiane Study participants. Remnant cholesterol was calculated as total cholesterol - LDL cholesterol - HDL cholesterol and variability as the coefficient of variation. DN category was based on consensus albuminuria reference limits and the progression status was confirmed from medical files. SDR was defined as retinal laser treatment. For 1338 individuals, the severity of diabetic retinopathy (DR) was graded using the ETDRS classification protocol. Median (IQR) follow-up time was 8.0 (4.9-13.7) years for DN and 14.3 (10.4-16.3) for SDR. Results Remnant cholesterol (mmol L-1) was higher with increasing baseline DN category (P < 0.001). A difference was also seen comparing non-progressors (0.41 [0.32-0.55]) with progressors (0.55 [0.40-0.85]), P < 0.001. In a Cox regression analysis, remnant cholesterol predicted DN progression, independently of diabetes duration, sex, HbA(1c), systolic blood pressure, smoking, BMI, estimated glucose disposal rate and estimated glomerular filtration rate (HR: 1.51 [1.27-1.79]). Remnant cholesterol was also higher in those who developed SDR (0.47 [0.36-0.66]) than those who did not (0.40 [0.32-0.53]), P < 0.001, and the concentration increased stepwise with increasing DR severity (P < 0.001). Regarding SDR, the HR for remnant cholesterol was 1.52 (1.26-1.83) with the most stringent adjustment. However, remnant cholesterol variability was not independently associated with the outcomes. Conclusions Remnant cholesterol concentration, but not variability, predicts DN progression and development of SDR. However, it remains to be elucidated whether the associations are causal or not.Peer reviewe

    Dairy consumption, systolic blood pressure, and risk of hypertension: Mendelian randomization study

    Get PDF
    Conclusion The weak inverse association between dairy intake and systolic blood pressure in observational studies was not supported by a comprehensive instrumental variable analysis and systematic review of existing clinical trials.</p

    A retrospective observational study to determine baseline characteristics and early prescribing patterns for patients receiving Alirocumab in UK clinical practice

    Get PDF
    Background Alirocumab is a fully human monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9) and has been previously shown, in the phase III ODYSSEY clinical trial program, to provide significant lowering of lowdensity lipoprotein cholesterol (LDL-C) and reduction in risk of major adverse cardiovascular events. However, real-world evidence to date is limited. Objective The primary objective was to describe baseline characteristics, clinical history, and prior lipid-lowering therapy (LLT) use of patients initiated on alirocumab in UK clinical practice following publication of health technology appraisal (HTA) body recommendations. Secondary objectives included description of alirocumab use and lipid parameter outcomes over a 4-month follow-up period. Methods In this retrospective, single-arm, observational, multicenter study, data were collected for 150 patients initiated on alirocumab. Results Mean (standard deviation; SD) age of patients was 61.4 (10.5) years and baseline median (interquartile range; IQR) LDL-C level was 4.8 (4.2–5.8) mmol/l. Alirocumab use occurred predominantly in patients with heterozygous familial hypercholesterolemia (HeFH) (n = 100/150, 66%) and those with statin intolerance (n = 123/150, 82%). Most patients started on alirocumab 75 mg (n = 108/150 [72%]) and 35 (23.3%) were up-titrated to 150 mg. Clinically significant reductions in atherogenic lipid parameters were observed with alirocumab, including LDL-C (median [IQR] change from baseline, − 53.6% [− 62.9 to − 34.9], P < 0.001). Conclusion This study highlights the unmet need for additional LLT in patients with uncontrolled hyperlipidemia and demonstrates the clinical utility of alirocumab in early real-world practice, where dosing flexibility is an important attribute of this therapeutic option

    Targeted genetic testing for familial hypercholesterolaemia using next generation sequencing:a population-based study

    Get PDF
    Background&lt;p&gt;&lt;/p&gt; Familial hypercholesterolaemia (FH) is a common Mendelian condition which, untreated, results in premature coronary heart disease. An estimated 88% of FH cases are undiagnosed in the UK. We previously validated a method for FH mutation detection in a lipid clinic population using next generation sequencing (NGS), but this did not address the challenge of identifying index cases in primary care where most undiagnosed patients receive healthcare. Here, we evaluate the targeted use of NGS as a potential route to diagnosis of FH in a primary care population subset selected for hypercholesterolaemia.&lt;p&gt;&lt;/p&gt; Methods&lt;p&gt;&lt;/p&gt; We used microfluidics-based PCR amplification coupled with NGS and multiplex ligation-dependent probe amplification (MLPA) to detect mutations in LDLR, APOB and PCSK9 in three phenotypic groups within the Generation Scotland: Scottish Family Health Study including 193 individuals with high total cholesterol, 232 with moderately high total cholesterol despite cholesterol-lowering therapy, and 192 normocholesterolaemic controls.&lt;p&gt;&lt;/p&gt; Results&lt;p&gt;&lt;/p&gt; Pathogenic mutations were found in 2.1% of hypercholesterolaemic individuals, in 2.2% of subjects on cholesterol-lowering therapy and in 42% of their available first-degree relatives. In addition, variants of uncertain clinical significance (VUCS) were detected in 1.4% of the hypercholesterolaemic and cholesterol-lowering therapy groups. No pathogenic variants or VUCS were detected in controls.&lt;p&gt;&lt;/p&gt; Conclusions&lt;p&gt;&lt;/p&gt; We demonstrated that population-based genetic testing using these protocols is able to deliver definitive molecular diagnoses of FH in individuals with high cholesterol or on cholesterol-lowering therapy. The lower cost and labour associated with NGS-based testing may increase the attractiveness of a population-based approach to FH detection compared to genetic testing with conventional sequencing. This could provide one route to increasing the present low percentage of FH cases with a genetic diagnosis

    Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE Collaboration): a meta-analysis of genome-wide association studies

    Get PDF
    &lt;p&gt;Background - Various genome-wide association studies (GWAS) have been done in ischaemic stroke, identifying a few loci associated with the disease, but sample sizes have been 3500 cases or less. We established the METASTROKE collaboration with the aim of validating associations from previous GWAS and identifying novel genetic associations through meta-analysis of GWAS datasets for ischaemic stroke and its subtypes.&lt;/p&gt; &lt;p&gt;Methods - We meta-analysed data from 15 ischaemic stroke cohorts with a total of 12 389 individuals with ischaemic stroke and 62 004 controls, all of European ancestry. For the associations reaching genome-wide significance in METASTROKE, we did a further analysis, conditioning on the lead single nucleotide polymorphism in every associated region. Replication of novel suggestive signals was done in 13 347 cases and 29 083 controls.&lt;/p&gt; &lt;p&gt;Findings - We verified previous associations for cardioembolic stroke near PITX2 (p=2·8×10−16) and ZFHX3 (p=2·28×10−8), and for large-vessel stroke at a 9p21 locus (p=3·32×10−5) and HDAC9 (p=2·03×10−12). Additionally, we verified that all associations were subtype specific. Conditional analysis in the three regions for which the associations reached genome-wide significance (PITX2, ZFHX3, and HDAC9) indicated that all the signal in each region could be attributed to one risk haplotype. We also identified 12 potentially novel loci at p&#60;5×10−6. However, we were unable to replicate any of these novel associations in the replication cohort.&lt;/p&gt; &lt;p&gt;Interpretation - Our results show that, although genetic variants can be detected in patients with ischaemic stroke when compared with controls, all associations we were able to confirm are specific to a stroke subtype. This finding has two implications. First, to maximise success of genetic studies in ischaemic stroke, detailed stroke subtyping is required. Second, different genetic pathophysiological mechanisms seem to be associated with different stroke subtypes.&lt;/p&gt

    The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management.

    Get PDF
    Plasma triglyceride concentration is a biomarker for circulating triglyceride-rich lipoproteins and their metabolic remnants. Common mild-to-moderate hypertriglyceridaemia is typically multigenic, and results from the cumulative burden of common and rare variants in more than 30 genes, as quantified by genetic risk scores. Rare autosomal recessive monogenic hypertriglyceridaemia can result from large-effect mutations in six different genes. Hypertriglyceridaemia is exacerbated by non-genetic factors. On the basis of recent genetic data, we redefine the disorder into two states: severe (triglyceride concentration >10 mmol/L), which is more likely to have a monogenic cause; and mild-to-moderate (triglyceride concentration 2-10 mmol/L). Because of clustering of susceptibility alleles and secondary factors in families, biochemical screening and counselling for family members is essential, but routine genetic testing is not warranted. Treatment includes management of lifestyle and secondary factors, and pharmacotherapy. In severe hypertriglyceridaemia, intervention is indicated because of pancreatitis risk; in mild-to-moderate hypertriglyceridaemia, intervention can be indicated to prevent cardiovascular disease, dependent on triglyceride concentration, concomitant lipoprotein disturbances, and overall cardiovascular risk

    Adverse effects of statin therapy: perception vs. the evidence - focus on glucose homeostasis, cognitive, renal and hepatic function, haemorrhagic stroke and cataract

    Get PDF
    Aims: To objectively appraise evidence for possible adverse effects of long-term statin therapy on glucose homeostasis, cognitive, renal and hepatic function, and risk for haemorrhagic stroke or cataract. Methods and results: A literature search covering 2000-2017 was performed. The Panel critically appraised the data and agreed by consensus on the categorization of reported adverse effects. Randomized controlled trials (RCTs) and genetic studies show that statin therapy is associated with a modest increase in the risk of new-onset diabetes mellitus (about one per thousand patient-years), generally defined by laboratory findings (glycated haemoglobin ≥6.5); this risk is significantly higher in the metabolic syndrome or prediabetes. Statin treatment does not adversely affect cognitive function, even at very low levels of low-density lipoprotein cholesterol and is not associated with clinically significant deterioration of renal function, or development of cataract. Transient increases in liver enzymes occur in 0.5-2% of patients taking statins but are not clinically relevant; idiosyncratic liver injury due to statins is very rare and causality difficult to prove. The evidence base does not support an increased risk of haemorrhagic stroke in individuals without cerebrovascular disease; a small increase in risk was suggested by the Stroke Prevention by Aggressive Reduction of Cholesterol Levels study in subjects with prior stroke but has not been confirmed in the substantive evidence base of RCTs, cohort studies and case-control studies. Conclusion: Long-term statin treatment is remarkably safe with a low risk of clinically relevant adverse effects as defined above; statin-associated muscle symptoms were discussed in a previous Consensus Statement. Importantly, the established cardiovascular benefits of statin therapy far outweigh the risk of adverse effects

    Non-fasting lipids and risk of cardiovascular disease in patients with diabetes mellitus

    Get PDF
    The aim of this study was to examine the effect of postprandial time on the associations and predictive value of non-fasting lipid levels and cardiovascular disease risk in participants with diabetes. This study was conducted among 1,337 participants with diabetes from the Dutch and German (Potsdam) contributions to the European Prospective Investigation into Cancer and Nutrition. At baseline, total cholesterol, LDL- and HDL-cholesterol and triacylglycerol concentrations were measured and the ratio of total cholesterol/HDL-cholesterol was calculated. Participants were followed for incidence of cardiovascular disease. Lipid concentrations changed minimally with increasing postprandial time, except for triacylglycerol which was elevated just after a meal and declined over time (1.86 at 0.1 h to 1.33 at >6 h, p for trend <0.001). During a mean follow-up of 8 years, 116 cardiovascular events were documented. After adjustment for potential confounders, triacylglycerol (HR for third tertile compared with first tertile (HR(t)₃(to)₁), 1.73 [95% CI 1.04, 2.87]), HDL-cholesterol (HR(t)₃(to)₁, 0.41 [95% CI 0.23, 0.72]) and total cholesterol/HDL-cholesterol ratio (HR(t)₃(to)₁, 1.65 [95% CI 0.95, 2.85]) were associated with cardiovascular disease, independent of postprandial time. Cardiovascular disease risk prediction using the UK Prospective Diabetes Study risk engine was not affected by postprandial time. Postprandial time did not affect associations between lipid concentrations and cardiovascular disease risk in patients with diabetes, nor did it influence prediction of cardiovascular disease. Therefore, it may not be necessary to use fasting blood samples to determine lipid concentrations for cardiovascular disease risk prediction in patients with diabete

    Smoking does not accelerate leucocyte telomere attrition: a meta-analysis of 18 longitudinal cohorts

    Get PDF
    Smoking is associated with shorter leucocyte telomere length (LTL), a biomarker of increased morbidity and reduced longevity. This association is widely interpreted as evidence that smoking causes accelerated LTL attrition in adulthood, but the evidence for this is inconsistent. We analysed the association between smoking and LTL dynamics in 18 longitudinal cohorts. The dataset included data from 12 579 adults (4678 current smokers and 7901 non-smokers) over a mean follow-up interval of 8.6 years. Meta-analysis confirmed a cross-sectional difference in LTL between smokers and non-smokers, with mean LTL 84.61 bp shorter in smokers (95% CI: 22.62 to 146.61). However, LTL attrition was only 0.51 bp yr−1 faster in smokers than in non-smokers (95% CI: −2.09 to 1.08), a difference that equates to only 1.32% of the estimated age-related loss of 38.33 bp yr−1. Assuming a linear effect of smoking, 167 years of smoking would be required to generate the observed cross-sectional difference in LTL. Therefore, the difference in LTL between smokers and non-smokers is extremely unlikely to be explained by a linear, causal effect of smoking. Selective adoption, whereby individuals with short telomeres are more likely to start smoking, needs to be considered as a more plausible explanation for the observed pattern of telomere dynamics

    Alcohol consumption and prostate cancer incidence and progression: A Mendelian randomisation study

    Get PDF
    Prostate cancer is the most common cancer in men in developed countries, and is a target for risk reduction strategies. The effects of alcohol consumption on prostate cancer incidence and survival remain unclear, potentially due to methodological limitations of observational studies. In this study, we investigated the associations of genetic variants in alcohol-metabolising genes with prostate cancer incidence and survival. We analysed data from 23,868 men with prostate cancer and 23,051 controls from 25 studies within the international PRACTICAL Consortium. Study-specific associations of 68 single nucleotide polymorphisms (SNPs) in 8 alcohol-metabolising genes (Alcohol Dehydrogenases (ADHs) and Aldehyde Dehydrogenases (ALDHs)) with prostate cancer diagnosis and prostate cancer-specific mortality, by grade, were assessed using logistic and Cox regression models, respectively. The data across the 25 studies were meta-analysed using fixed-effect and random-effects models. We found little evidence that variants in alcohol metabolising genes were associated with prostate cancer diagnosis. Four variants in two genes exceeded the multiple testing threshold for associations with prostate cancer mortality in fixed-effect meta-analyses. SNPs within ALDH1A2 associated with prostate cancer mortality were rs1441817 (fixed effects hazard ratio, HRfixed  = 0.78; 95% confidence interval (95%CI):0.66,0.91; p values = 0.002); rs12910509, HRfixed  = 0.76; 95%CI:0.64,0.91; p values = 0.003); and rs8041922 (HRfixed  = 0.76; 95%CI:0.64,0.91; p values = 0.002). These SNPs were in linkage disequilibrium with each other. In ALDH1B1, rs10973794 (HRfixed  = 1.43; 95%CI:1.14,1.79; p values = 0.002) was associated with prostate cancer mortality in men with low-grade prostate cancer. These results suggest that alcohol consumption is unlikely to affect prostate cancer incidence, but it may influence disease progression
    corecore